TROJAN ••••

Great Lakes Ballast Water Collaborative Meeting

Jim Cosman, Market Manager August 3, 2012

Trojan Technologies

Company Background

- Leading supplier of UV for municipal, industrial, commercial, and consumer applications
- Largest global installed base of UV disinfection systems
- Over 7,800 municipal UV installations on 6 continents treating over 44 billion gallons/day
- 35 years of research, innovation and commercialization of water treatment technologies
- Staff of over 800 in 12 countries
- Winner of the 2009 Stockholm Water Industry Award

Trojan Marinex[™] is a division of Trojan Technologies, dedicated to the development, sale and support of Ballast Water Treatment solutions

Experience Treating Large Flows and Challenging Waters with UV

Honolulu Wastewater Treatment (Primary Effluent) treating 82 MGD (12,934 m³/h)

New York City – 2 Drinking Water Plants Treating 2.5 Billion Gallons per day (395,000 m³/h)

Trojan Marinex Ballast Water Treatment System

Integrated Filtration and UV Disinfection reduces Footprint and Power Draw

- Footprint 50% less space than competing systems, minimizing space requirements & ease of installation, particularly for retrofit applications
- Power one-third the power draw of other Filtration/UV systems, enabling use in higher flow applications
- Explosion Proof All models also available in explosion-proof version
- **Broad System Range –** 7 discrete flow models treating flows ranging from 150 m³/h to 1500 m³/h

Ballast Water System Development Experience

Testing Has Occurred at Multiple Facilities Globally

Ballast-Tech NIVA Test Facility,

Golden Bear Test Facility, California

DHI Test Facility, Denmark

Aquatron Test Facility, Nova Scotia

Ballast Water System Development Experience Shipboard Testing

Land and Ship Based Testing aboard Golden Bear

Ship Based Testing aboard CMA CGM Utrillo

Complex & Shifting Regulatory Landscape

Converging Discharge Standards - More Stringent US Validation/Type Approval Standards

Meeting / exceeding Regulatory requirements key to long-term winning strategy:

- Ratification of IMO Ballast Water Convention delayed and still pending (2013-15?)
- US Coast Guard Ballast Water regulations published in March 2012, become effective June 21, 2012
 - Market focus will shift to US Ballast Water Requirements

- US discharge standards <u>essentially same</u> as IMO
- US Validation/Type Approval standards are <u>more stringent</u> (e.g. Quality Control, test protocols & procedures)
- Five Year compliance timeline <u>non-compliance risk</u> for owner

Water Treatment Issues for the Great Lakes

Unique Water Quality Conditions, Short Voyages, and High Flow Rates

1. Water Quality Conditions:

- Fresh water
- Cold water
- High Flow Rates: Over 75 percent of the vessels on the Great Lakes have 2 x 1500 tons per hour ballast pumps
- 3. Short Voyages some a few hours
- Filtration challenges many vessels loaded within 6 inches of bottom
- 5. US Coast Guard Type Approval

Filter Testing, Port Stanley, Lake Erie, Ontario

Water Treatment Issues

- 6,000 m³/hr equivalent to a city with 200,000 people
- Water treatment plant for 200,000 people would occupy > a city block
- Equivalent BWT system space requirements < 250 ft²
- Water treatment plants have a predictable source with minor seasonal variations
- Water treatment plants have professional operators
- Validation of equipment for usually involves a surrogate organism (e.g. MS-2 bacteriophage)
- Water treatment plants have known targets for certain target organisms (e.g. 4 log virus removal)

Testing Challenges Ambient Water Conditions Vary at Each Test Facility

Table 1. Summary of ambient water parameters in at different test sites.

Parameter	NIOZ	MERC	GSI	NRL	DHI	DHI	KOMERI	KORDI	SWBWTCS	NIVA	MRDTC
	Netherlands	USA	USA	USA	Denmark	Singapore	Korea	Korea	China	Norway	Japan
Temp (°C)	variable	4 - 30	9 - 22	20 - 32	variable	28 - 31	4.7 - 22.9	3.1 -	16 - 22	2-15	8-25
								29.0			
Salinity	20 - 34	5 - 25	0-1	35 - 41	0 - 33	<0.3 –	30.3 -	21.1 -	32 - 33	0 - 34	31 – 34
(PSU)						32.2	34.3	33.8			
TSS (mg 1 ⁻¹)	5 - 400	1 - 60	2 - 21	1-51	variable	1.6 - 54	variable	20 – 90	1-5	variable	5-11
POC (mg 1 ⁻¹)	5 - 20	0.5 - 8	< 1	2-4	> 5	variable	1.1 - 28.8	0.4 -	ca. 5	variable	< 0.1 -
								5.9			1.7
DOC (mg l ⁻¹)	1-5	2 - 10	6 - 22	2-4	> 10	variable	5.7 - 12.0	0.3 –	ca. 2	variable	1.0 - 1.5
								32.8			
Organisms	10,000 -	10,000 -	100,000 -	50,000	variable	10 ⁵ - 10 ⁶	3,220 -	1 - 100	standard met	variable	5.8 x 10 ³
\geq 50 µm m ⁻³	1,000,000	300,000	3,000,000	-			78,720	x 10 ⁵			- 5.3 x
-				180,000							105
Organisms	100 -	500 -	25 -	ca. 10 –	variable	$10^2 - 10^4$	1 - > 800	120 - >	50 % of	variable	variable
$< 50 \ \mu m$ and	100,000	15,000	1,200	200				209,100	standard		
\geq 10 µm ml ⁻¹											
Heterotrophic	10,000 -	10,000 -	> 1,000	10 ⁵ -	variable	10 ⁴ - 10°	variable	0.2 -	standard met	variable	variable
bacteria ml ⁻¹	10,000,000	10,000,000		107				12.7 x			
								10 ⁶			

Source: Global Expert Workshop On Harmonization Of Methodologies For Test Facilities Of Ballast Water Management Systems, 24-25 January 2010, Page 5

Testing Challenges

Harbours With Low Salinity

Port	Summer Tempera- ture (°C)	Winter Tempera- ture (°C)	Wet Season Salinity (ppt)	Dry Season Salinity (ppt)
Campana (AR)	24.0	15.0	0.0	0.0
Antwerpen (BE)	17.0	5.0	0.0	0.0
Ghent (Gent) (BE)	17.0	5.0	0.0	0.0
Amsterdam (NL)	18.0	6.0	0.0	0.0
Davant (US)	27.0	12.0	0.0	0.0
New Orleans (US)	27.0	17.5	0.0	0.0
Portland Oregon (US)	12.0	1.0	0.0	0.0
Vancouver Washington (US)	12.0	1.0	0.0	0.0
Calcutta (IN)	29.0	25.0	0.0	0.0
Nicolaev (UA)	21.4	1.3	0.1	0.2
Philadeplhia Pennsylvania (Port Richmond) (US)	18.0	2.0	0.0	1.0
Wilmington Delaware (US)	18.0	2.0	0.0	3.0
Port Harcourt (NG)	29.0	26.0	0.0	4.0
Baltimore Maryland (US)	20.0	2.5	0.0	4.0
Beaumont (US)	28.5	16.0	0.0	5.0
Shanghai Baoshan (CN)	25.5	7.0	0.5	5.0
Shanghai (CN)	26.4	6.5	0.8	4.9
Lake Charles Louisana (US)	27.0	20.0	0.0	7.0

Table 15: Globallast inventory (Clarke et al. 2003a): harbours with low salinity.

Testing Challenges

Cold water ports

Table 10: List of coldest ports (10% of 357 harbours in the Globallast inventory, Clarke et al. 2003).

Port	Winter Temp. (°C)	Port	Winter Temp. (°C)
Sept-Iles (Pointe Noire) Quebec (CA)	-1.0	llyichevsk (UA)	2.6
Tianjin (CN)	-0.1	Vancouver (British Columbia) (CA)	3.0
Boston Massachusetts (US)	0.5	Roberts Bank (British Columbia) (CA)	3.0
Anchorage Alaska (US)	1.0	Yantai Shandong (CN)	3.0
Portland Oregon (US)	1.0	Hamburg (DE)	3.0
Vancouver Washington (US)	1.0	Hafnarfjörður (IS)	3.0
Dnepro-Bugsky (Ochakov) (UA)	1.3	Straumsvik (IS)	3.0
Nicolayev (UA)	1.3	Enstedvaerkets Havn (DK)	3.5
Come By Chance (CA)	2.0	Fredericia (DK)	3.5
Halifax Nova Scotia (CA)	2.0	Wilhelmshaven (DE)	4.0
La Havre (FR)	2.0	Qinggdao Shandong (CN)	4.2
New York New York (New Jersey) (US)	2.0	Midia (RO)	4.5
Philadeplhia Pennsylvania (US)	2.0	Constanta (RO)	4.9
Wilmington Delaware (US)	2.0	Antwerpen (BE)	5.0
Dalian Liaoning (CN)	2.2	Ghent (Gent) (BE)	5.0
Vladivostok (RU)	2.5	Mangalia (RO)	5.7
Baltimore Maryland (US)	2.5	Varna, Bulgaria (BG)	5.9
Odessa (UA)	2.6	Amsterdam (NL)	6.0

Great Lakes Ballast Water Quality Conditions

Seasonally Cold Temperatures, No Salinity

Source: NBIC Database - 1 Jan 2009 – 31 Dec 2010 US Ballast Water Discharge Records. Top 10 Domestic and Foreign Sources

Foreign Sources

Port	Min Temp	Max Temp	Avg Salinity			
Rotterdam (Netherlands)	4.55	19.25	1.78			
Jorf Lasfar (Malasyia)	14.83	25.03	36.46			
Antwerp (Belgium)	5.32	19.61	0.31			
Oxelosund (Sweden)	0.87	16.23	6.36			
Szczecin (Poland)	2.42	19.99	7.8			
Ardalstangen (Norway)	0.01	12.32	0			
Annaba (Algeria)	12.72	25.68	37.03			
Foynes (Ireland)	7.49	17.14	8.6			
Iceland	2.28	10.42	32.33			
Djen-Djen (Algeria)	14.5	25.6	36.95			

Deut	Min Tomp	Mox Tomp	Ave Colinity
Port	Min Temp	Max Temp	Avg Salinity
Cleveland	0.45	23.65	0
Sault Ste. Marie (Canada)	0.23	18.85	0
Detroit	0.28	22.88	0
Hamilton (Canada)	1.17	20.97	0
Gary	0.28	22.32	0
Saint Clair	0.18	21.68	0
Toledo	0.15	24.48	0
Indiana Harbor	0.23	22.45	0
Nanticoke (Canada)	0.53	22.78	0
Ashtabula	0.67	23.3	0

Domestic Sources

Seasonally Cold Temperatures, No Salinity Land Based Test in Colder Water Temperatures and in Fresh Water

- Land based test in fresh water at Dalhousie University Aquatron Ballast Water Testing Facility
- Test in colder water temperatures at Dalhousie University Aquatron Ballast Water Testing Facility

Scaling UV Systems- 3 Fundamental Approaches

Two Existing Approaches in Market to Scale Up UV Systems

250 m³/h Land based test of only <u>one</u> discrete flow model and utilize same unit in parallel for larger flows

Land based test of only <u>one</u> discrete flow model and utilize mathematical models or Computational Fluid Dynamics to scale up to larger flows 250 1000 1500 2500 m³/h m³/h

Land based test of <u>each</u> discrete flow model and utilize empirically validated units or land based test smallest and largest unit and extrapolate in between

Type Approved Systems Incorporating UV Disinfection

Two Existing Approaches in Market to Scale Up UV Systems

System	Total Rated Capacity m ³ /h	Discrete Flow Models - BWT	Discrete Flow Models - UV	Flow model tested – land and ship
Manufacturer A	60 –6000	~ 24	~ 8	250 m ³ /h land 250 m ³ /h ship
Manufacturer B	50-6000	~ 13	Unknown	250 m ³ /h land 260 m ³ /h ship
Manufacturer C	Up to 3000	Unknown	1 (250 m³/h)	500 m3/h land
Manufacturer D	Up to 3000	Unknown	1 (167 m³/h)	330 m ³ /h land

Scaling UV Systems

Reduce Sizing Risk By Land Based Testing Larger Flow Systems that will be Utilized by Lakers

250 m³/h

System Operability: Filter Optimization

Filter optimization is critical:

- Filtration is a critical step in treating organisms: must remove or damage organisms – not let them "squeeze" through.
- Filters can plug if improperly operated: operating at improper flux rates or poorly designed backwash systems can hinder operation.
- Frequent filter backwashing: constant backwashing can lead to reduced flow rate and extend time in port, jeopardizing ship schedules and revenue

Filter element

Filter insert & cleaning arm

